Let M = (S, \rightarrow , L) be a CTL model, s be a state in M, and π be a computation path beginning with state s0. We define satisfaction relations for state and path formulas:

1. (a) M, s $|= p \text{ iff } p \in L(s)$.

(b) M, s \mid = $\neg \phi$ iff M, s 6 \mid = ϕ .

(c) M, s $|= \phi 1 \land \phi 2$ iff M, s $|= \phi 1$ and M, s $|= \phi 2$.

(d) M, s $|= A[\alpha]$ iff for all paths τ beginning at s we have M, $\tau |= \alpha$.

(e) M, s $\mid = E[\alpha]$ iff for some path τ beginning at s we have M, $\tau \mid = \alpha$.

2. (a) M, $\pi \mid = \phi$ iff M, s0 $\mid = \phi$.

(b) M, $\pi \mid = \neg \alpha$ iff M, $\pi 6 \mid = \alpha$.

(c) M, $\pi \mid = \alpha 1 \land \alpha 2$ iff M, $\pi \mid = \alpha 1$ and M, $\pi \mid = \alpha 2$.

(d) M, $\pi \mid = X\alpha$ iff M, $\pi 2 \mid = \alpha$.

- (e) M, $\pi \mid = G\alpha$ iff, for all $i \ge 1$, M, $\pi i \mid = \alpha$.
- (f) M, $\pi \mid = F \alpha$ iff, for some $i \ge 1$, M, $\pi i \mid = \alpha$.

(g) M, $\pi \mid = \alpha 1 \cup \alpha 2$ iff for some $i \ge 1$, M, $\pi i \mid = \alpha 2$ while M, $\pi j \mid = \alpha 1$ for all j < i.

where p ranges over atomic descriptions, α over path formulas, and ϕ over state formulas.